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Abstract 
 

It is well known that quality of the hydrophysical fields received as a result of realization of 
the prognostic model of the dynamics of the baroclinic ocean considerably depends on quality of 
the input data. In the present study, on the basis of the conjugated equations and the perturbation 
theory the algorithm for specification of the observational data on the non-stationary processes, 
used in the boundary conditions on the free sea surface, is offered. With the purpose of conven-
ience, at first the algorithm on preparation of the initial data for the prognostic model of the ocean 
dynamics is considered on an example of two-dimensional, xoz-coordinate plane, transfer-diffusion 
equation  for a substance, and then - for a three-dimensional problem of  dynamics of baroclinic  
ocean.  
 
1. Introduction 

 
          At solution of problems of ocean dynamics, especially with taken into account non-stationary 
atmospheric processes, there is a number of problems. Among them the preparation of initial data 
which are absent not only for the World ocean but even for the internal seas, is rather important. 
However, this problem can be solved successfully by means of hydrodynamic methods. Consider-
ing a problem of forecasting of ocean currents, it is natural to assume that initial fields, especially in 
the upper layer, will be formed basically under forcing of atmospheric non-stationary conditions, 
first of all by  wind and thermal modes at the free ocean surface. With the purpose of preparation of 
the initial data for the problem of the ocean dynamics, at first it is necessary to solve a problem 
about a climatic condition of the ocean with zero initial and climatic boundary conditions on a free 
surface of the ocean. Then, the received fields are used as the initial data in the problem of ocean 
dynamics, where the real data on weather conditions are used as boundary conditions on the ocean 
free surface. As a result of solution of this problem we find the solution for perturbation in oceanic 
circulation under concrete meteorological situations in the atmosphere within some time period. 
Thus, taking into account real perturbations of meteorological processes in the atmosphere, the con-
structed hydrophysical fields can be used as initial conditions at solution of the problem of  forecast 
of ocean circulation  [1].   

As a whole the marine forecast can be divided into two stages. At the first stage, the problem 
allowing to receive the information about the stationary (climatic) condition of currents and fields 
of temperature, salinity, and density under influence wind stress, heat and salinity fluxes on the 
ocean free surface, is solving. At the second stage, the received climatic hydrophysical fields, when 
there are real continuous non-stationary meteorological fields in the atmosphere within the time pe-
riod mtt ≤≤0  previous to a prognostic interval Tttm ≤≤ , are used as initial fields for solution of 
the prognostic model of oceanic processes.  
          It is necessary to note that the local meteorological information is very sensitive to unpredict-
able meteorological "noise" that is essentially reflected on results of mathematical model. At pre-
sent, numerical prognostic models are developed, which qualitatively adequately describe the 
physical processes occurring in the oceans and seas [1-19]. However, for qualitatively true descrip-
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tion of the forecast of hydrophysical fields it is necessary to use assimilation of various observa-
tions.  
          Assimilation of measurements represents the procedure, which allows to combine the obser-
vational data with modeling calculations for maximally adequate reproduction of a real state of the 
environment [20]. 
          In the present study, on the basis of the conjugated equations and the perturbation theory the 
algorithm on specification of the given observations on the non-stationary processes used in the 
boundary conditions on the free sea surface sea is offered. As is known, quality of the hydrophysi-
cal fields received as a result of realization of the prognostic model of the dynamics of the baro-
clinic sea considerably depends on quality of these data.                           

With the purpose of convenience, at first the algorithm on the preparation of the initial data 
for a prognostic model is considered on an example of two-dimensional (xoz-vertical plane)  trans-
fer-diffusion equation  for a substance, and then – for a three-dimensional problem of  dynamics of 
baroclinic  ocean.  
          The theory of conjugated equations and the theory of perturbations for a long-term weather 
forecast and protection of the environment have been developed in Marchuk's  numerous articles  
and presented in detail in monographies [1, 2]. The method of preparation of initial data developed 
in this study is based on above mentioned researches. 
 
2. Two-dimensional prognostic problem 
 
Let us consider, for example, a 2D transfer-duffusion equation in the area Ω (vertical section in the 
coordinate system xoz, with z-axis directed vertically downward ) with depth Н. Thus, we have an 
equation 
                                                    0TTTudivT zzTxxTt =′−′−+ νμ                                                    (1) 
with boundary  and initial conditions  
                              
                                      TzT QT =′ν                    on              z = 0, 
                                         0=zT                       on              z = H,                                               (2) 
                                         0=xT                       on             x =  0, L, 
                                          0TT = (x, z)              at              t =  0.                                              (3)                            
 
          Here Т is the deviation of temperature of marine water from its standard values )z(T , 

RTTQ BMT −−= )(β , TM and TB  are deviations of climatic temperature of the ocean surface and 
the air at the level z = 2 m, respectively; β  is the factor of ocean heat transfer; R = S+A+B, where 
R is the radiation flux through the unit square in the plane xoy on the level  z; S is the flux of short-
wave solar radiation; A is the flux of long-wave radiation, directed downward аnd  B is the flux of 
long-wave radiation, directed upward, T0 is given function;  L is the size of the solution domain 
along x; TTT δμμμ +=′ and TTT δννν +=′  are horizontal and vertical diffusion coefficients, respec-
tively, where Tδμ  and Tδν are already defined on the basis of conjugated equations and the theory 
of small perturbations [14, 21, 22]; u and  w are known functions, which are the components of 
flow velocity vector u , and satisfy the continuity equation 
 
                              0=udiv  
 
and boundary conditions 
 
                               u = 0                           on              x = 0, L, 
                              w = 0                           on              z = 0, H. 
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        Now, with the purpose of creation of a conjugate problem let us multiply the equation (1) by 
some function ∗T  and integrate the result on time  variable from  0 to some  mt and on the area  Ω. 
Then, we will receive  

                            ( ) 0dtdTTTudivTT
mt

0
zzTxxTt

* =′−′−+∫ ∫∫
Ω

Ωνμ .                                            (4) 

   
The left part of the equality (4) we will transform so that behind brackets under integral 

there was function Т, and in the brackets – the differential parity containing function Т*. With this 
purpose we consider the operator   
 
                                                21 ΛΛΛ ′+=′ ,  
where 
                             Λ1Т= Tudiv ,                     zzTxxT2 TTT νμΛ ′−′−=′′ . 
 
Let  
                                             ( ) ∫∫

Ω

= ωghdhg, , 

where integration is made in the area of definition  of some functions g and h.  Then, with the help 
of the Lagrangian identity and homogeneous boundary conditions, corresponding to conditions (2) 
and similar conditions for function *T , it is evident that 
                               
                              ( ) ( ) ( ) ( ) ( )=′+=′+=′ T,TT,TT,TT,TT,T *

2
***

12
*

1
** ΛΛΛΛΛ  

                              ( )∫∫ ′−′−−=
Ω

Ωνμ dTTTudivT *
zzT

*
xxT

* . 

 
Thus, we have 
                                                               1

*
1 ΛΛ −=   и      2

*
2 ΛΛ ′=′ . 

                                       
Let *f and *

mt
T  are known functions of coordinates, which we will define later.  If we assume that 

the function 
*

T satisfies the conditions 
 
                          **

M
*
zT fTT +=′ βν                     on              z = 0, 

                          0* =zT                                    on               z = H,                                              (5) 
                          0*=xT                                      on               x = 0, L, 
                          **

mt
TT =                                  on               mtt = ,                                             (6) 

 
after corresponding transformations and  using (2)–(3) and  (5)–(6) from (4) we  receive  
 

                   
( ) ( )

( ) .dtdxfTdtdxRTT

dtdTTTudivTTdTTTT

m m

m

mm

t

0

t

0

L

0

*
M

L

0
B

*
0z

t

0

*
zzT

*
xxT

**
t0

*
0t

*
t

∫ ∫ ∫∫

∫ ∫∫∫∫

++=

=′−′−−−+−

= β

ΩνμΩ
ΩΩ                              (7) 

 
Assume that

*

T satisfies the equation 
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                                        *
zzT

*
xxT

**
t TTTudivT νμ ′+′=−−                                                                (8) 

 
at boundary and initial  conditions (5)-(6). The equation (8) is conjugate with respect to the equation 
(1).   

Let us  multiply the equation  (1) by *T ,  the equation  (8) – by T , and  integrate them on 
the area Ω  and on time in limits from 0 to mt , the result we will subtract from each other. Then 
with using the boundary conditions (2)-(3), (5)-(6), after corresponding transformations, we  will 
receive  the quality 

                         ( ) ( ) ∫ ∫∫ ∫∫∫ == =+−−
mm

mm

t

0

L

0

*
0z

t

0

L

0
B

*
0z0

*
0t

*
t dxdtfTdxdtRTTdTTTT βΩ

Ω

.                               (9) 

 
Let us assume that 

                         
⎪⎩

⎪
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=−−
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TT
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δ
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Then, as  

                         ( )0t,0z
T

2
T

t

0

L

0

*
0z xT

g
dxdtfT

m

m

==
′

=∫ ∫
γν , 

and if  we assume  that 0* =
mt

T and ( ) ( )xTxT
mmt t,0zM =≡ , from (9) we have 

                     

                  ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++Ω−= ∫ ∫∫∫ =

Ω

m

mt

t L

B
*
z

*
TM dtdxRTTdTTrxT

0 0
0000 β ,     .gr

TT
T γν 2′
=                    (10) 

 
This formula specifies a relation between temperature in the given point on the surface z = 0 of the 
area Ω at the time moment mt , initial relation (at t = 0) of the ocean and boundary conditions from 
(2). In the formula (10) 0T  is given at the initial time moment, but *

0T   is the solution of the problem 
(8), (5)–(6) at condition 0* =

mt
T . 

Thus, to use the formula (10) it is necessary for each fixed point 0x to solve the conjugate 
problem (8), (5)-(6). This circumstance specifies that to use the formula (10) is not effectively, es-
pecially, when we consider a three-dimensional problem of the baroclinic ocean dynamics. How-
ever, to simplify this problem, the surface σ  of the area Ω  is divided, for example, on two parts 1σ  
and 2σ  and the average anomaly of temperature in each of them is defined. With this purpose as-
sume in (7) that 

                          ( )
⎪⎩

⎪
⎨
⎧

=∈−
′

=
domaingiventheofout

ixiftt
gf im

i
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,0

)2,1(,*

2

σδ
σ
γν

                            

where                          
⎩
⎨
⎧

≠
=

=−
m

m
m ttif

ttif
tt

,0
,1

)(δ .                                                           

Our goal is an improvement of the quality of the initial data at  mtt =  in the prognostic 
model, but as is known, it essentially depends on quality of the field of temperature anomaly given 
on the boundary conditions on the ocean free surface. In this connection, following the results re-
ceived in [1], we construct corresponding functional for calculation  average anomaly of tempera-
ture ( )

mtMTδ on the ocean free surface at the time moment mt   and then we define the perturbing 



 
 

22

state (anomaly) of temperature on equality  ⎟
⎠
⎞⎜

⎝
⎛+=′ i

mtmt
i

mt MMM TTT
σσ δ , where i

mtMT σ  is climatic value of 

temperature on z = 0 at the time moment  mt . Function i

mtMT σ′ defined by this way is used on the 

boundary conditions on z = 0 for perturbed prognostic equation (the real state of the  ocean we 
name perturbed, and the climatic state we assume as the basic "undisturbed" state of the ocean [1]). 
         Now we will designate average anomaly of temperature accordingly for subareas iσ  (i = 1, 2) 
as follows 

                                                       i

mtmt
M

L

M
i

TdxT
σ

σ
=∫

0

1 . 

 
Then, we have 
 

                       i

mtmt

m

M
T

2
T

L

0
M

i

T
2

T
t

0

L

0

*
M T

g
dxT

g
dtdxfT

σγν
σ
γν ′

=
′

= ∫∫ ∫ .                                                       (11) 

 
Considering (11) from  (9), under the condition 0* =

mt
T , accordingly for  1σ  and 2σ  we  receive  

 

                      ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++−= ∫ ∫∫∫ =

m
i

mt

t

0

L

0
B

*
0z0

*
0TM dtdxRTTdTTrT βΩ

Ω

σ .                 (i = 1, 2).                  (12) 

 
Expressions (12) mean that average anomaly of temperature on iσ  is calculated by data on the in-
terval mtt ≤≤0 . It is necessary to notice that the formulas received from (12) at i = 1, 2 are visually 
similar, though they differ by solution of the conjugate problems. Thus, the problem on definition 
of average anomaly of temperature on iσ   was reduced to the solution of the conjugate problem (8), 
(5) – (6) under the condition 0* =

mt
T . 

Expressions (12) are needed at consideration of the perturbation theory. With this purpose 
we will consider the perturbed equation  

 
                                          zzTxxTt TTTudivT ′′+′′=′+′ νμ  .                                                               (13) 
 
At the following boundary and initial conditions 
 
                                         TzT QT ′=′′ν                       on              z = 0, 
                                         0=′zT                            on              z = H,                                           (14) 
                                         0=′xT                            on              x = 0, L, 
                                         0TT ′=′                           on              t = 0,                                             (15) 
 
where 0T ′  is climatic value (the solution of the problem (1)–(3) at condition 0T0 = ),  
 

( ) RTTQ BMT −′−′=′ β , MMM TTT δ+=′ , BBB TTT δ+=′ . 
 
       Now we multiply the equation (13)  by the conjugated function *T , corresponding  to the not 
perturbed (climatic) problem (1) – (3), and the conjugated problem (8) – by T ′ , Then, results of 
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these operations we will subtract  from each other  integrate both  on time from 0 to mt  and on the 
area Ω . Similar to (12) we receive following expressions 
 

                           ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+′+Ω′−=′ ∫ ∫∫∫ =

Ω

m
i

mt

t L

BzTM dtdxRTTdTTrT
0 0

*
00

*
0 β

σ
 ,  ( i = 1, 2).                         (16) 

Considering that 
 
                    ( )i

mt

i

mt

i

mt MMM TTT
σσσ

δ+=′ ,    iii TTT σσσ δ 000 +=′ ,  iii
BBB TTT σσσ δ+=′  ,  (i = 1, 2)          

 
and subtracting  from (16) equality (12), we come to the functionals  for definition of values 
( )i

mtMT
σ

δ  , (i = 1, 2) accordingly for subareas iσ  at the moment mt . Thus, we have 
 

                     ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+Ω−= ∫ ∫∫∫ =

Ω

m

iii

Mt

t L

BzTM dtdxTTdTTrT
0 0

*
00

*
0

σοσ
δβδδ  ,         (i = 1, 2).   

                
Further, on equalities   
 
                                        ( )i

mt
i

mt

i

mt
MMM TTT
σσσ δ+=′                        (i = 1, 2)                                        (17) 

 
we define perturbed values of temperature anomalies on iσ   at the time moment mt . 
Now, let us consider the perturbed equation again 
 
                                       ( ) ( ) zzTTxxTTt TTTudivT ′++′+=′+′ δννδμμ                                            (18) 
 
at boundary and initial conditions (14)–(15), in addition, on the boundary conditions on z = 0 func-
tions  i

mtMT σ′ , i = 1, 2, defined from formulas (17), are used. 

 Thus, at solution of the problem (18), (14), and (15) it is supposed that the heat flux on the 
ocean surface TQ′  is known at any moments of time previous prognostic time interval. Choosing as 
the initial condition at t = 0 climatic condition of ocean, we will adapt step by step the ocean for the 
real perturbations arriving from its surface. It is necessary to notice that in the perturbation problem 
(18), (14), and (15), except the specified values of anomalies of temperature i

mtMT σ′  (i = 1, 2), in-

cluded in the boundary conditions on the surface of considered area Ω, are also used the perturbed 
values of factors turbulent diffusion TTT δμμμ +=′ and TTT δννν +=′ that considerably raises ade-
quacy of the results received on the perturbation problem, with an existing condition of a thermal 
condition of ocean  [ 22 ]. The received solution of the perturbed problem (18), (14), and (15) or 
ditto the information on a thermal mode of the ocean can be used as the initial data by consideration 
of prognostic model in the range of time Tttm ≤≤ .  
  On the basis of the above-stated it is possible to summarize that the sequence of realization 
of the algorithm of preparation of the input information at the initial time moment mtt =  for the 
prognostic problem is following:  

1. On the basis of the theories of the conjugate equations and small perturbations the eddy 
factors Tδν   and  Tδμ  are defined and we can find TTT δμμμ +=′  and TTT δννν +=′ ; 

2. The problem  
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,tatT~
,T~

t
T~

00

0

==

=Λ′+
∂
∂

 

 
is solving and there is supposed that the input data used on boundary conditions on the free surface 
are climatic data.  The problem is solving  before quasisteady state achievement. 

3. In the range of time mtt ≤≤0  the  problem 
                                    

0

0

1
==

=Λ′+
∂
∂

tatT~T

,T
t
T

mt

 

 
is solving. Here the input data used on the boundary conditions on the free surface are climatic data. 

4. within the interval  mtt ≤≤0  at 0* =
mt

T    the conjugate problem (8), (5), (6) is solving 
twice with taken into account  1σ   and 2σ  respectively.   

5. It is supposed, that during any moments of time, previous to a predicted interval of time it 
is known the heat flux  ( )BMT TTQ δδβδ −=    on the ocean surface. Then, solving (18), (14), (15) 
during the  interval of time mtt ≤≤0  with use of initial climatic data at t = 0 ( the solution of the 
problem from point 3) the ocean  will be adapted step by step to  real perturbations getting from the 
ocean surface.  

6.  The functional   
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=⎟

⎠
⎞⎜

⎝
⎛ ∫ ∫∫∫ =

m

ii

mt

t

0

L

0
B

*
0z0

*
0TM dtdxTTdTTrT σ

Ω

σ
δβΩδδ           (i = 1, 2) 

 
and the perturbed state of the temperature anomaly on the ocean free surface at the time moment  

mtt =                    
 

( )i

mt
i

mt

i

mt
MMM TTT
σσσ δ+=′                                           (i = 1, 2). 

is calculated. 
Here 000 TTT −′=δ , 0T  is the climatic value, *

0T  is the solution of the problem from the point 5 at 
moment mt and  *T0  is the solution of the problem (8), (5), (6) at conditions 0T *

tm
= ; 

7.  On this stage the perturbed  problem (18), (14), (15) is solving again, in which in the boundary 
conditions (14) at definition of the heat flux on a free surface, function   i

mtMT σ′  determined in the item 

6 is used, as the initial data at t = 0 solution from point 5 is used, i. е.. 
mt

TT ′=′0 .This procedure can 
be continued until then,  the necessary approximation between calculated and existing fields of 
anomaly of temperature on a free surface of ocean will not be achieved. Here the received solution 

mt
T ′  for the moment of time mt  is used as the initial data for prognostic models in the  interval of 
time Tttm ≤≤ . 
 
3. Three-dimensional prognostic problem  
 
Now we shall consider 3D problem of the ocean dynamics for which we use results received in the 
first part of the present work which concerns specification of the field of the temperature anomaly  
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on the ocean free surface. As we have already noted, the quality of the temperature anomaly re-
ceived as a result of solution of the prognostic baroclinic problem of the ocean dynamics considera-
bly depends on quality of such field.        

So, in the closed basin Ω , having depth H and lateral surface Σ , we shall consider the fol-
lowing system of the differential equations, describing dynamics of the baroclinic ocean, written in 
terms of deviation from standard values of geophysical fields. 

 
                                             zz0x1t uu/plvuu νΔμρΛ ′+′=+−+ , 
                                             zz0y1t vv/pluvv νΔμρΛ ′+′=+++ , 
                                             ρgpz = ,                                                                                       (19) 
                                             0wvu zyx =++ , 
                                             zzTTT1t TTwTT νΔμγΛ ′+′=++ , 
                                             zzSSS1t SSwSS νΔμγΛ ′+′=++ , 
                                             ST ST ααρ += . 
 
As boundary and initial conditions for system (19) we shall accept the following  
                       
                          0xzz /u ρτν −=′   , 0yzz /v ρτν −=′   ,  0=w , 
                         TzT QT =′ν  , SzS QS =′ν                                              on  z = 0; 
                         u=0  ,  v=0 , 0/ =∂∂ nT  , 0/ =∂∂ nS                        on  Σ ;                          (20) 
                         0=zu , 0=zv  ,w=0, 0=zT , 0=zS                          on  z = H;  
                        0uu =  , 0vv =  , 0TT =  ,  0SS =                              at  t = 0.                       (21) 
 
         Here  u, v, and w  are the components of velocity vector u ; p, ρ , T, and S are the deviations 
of the pressure, density, temperature and salinity of sea water from standard values ( ) ( ) ( )zT,z,zp ρ  
and ( )zS , respectively; )ESR(SQ **

n
*
nMS −+= , MS  is the deviation of climatic salinity on the see 

surface, *
nR  is the atmospheric precipitation, *

nS  is snowfall, *E  is the sublimation or evaporation. 
Thus, it is assumed that,  change of salinity is defined by the difference between precipitation and 
evaporation; yzxz ττ ,  are the wind stress components along x and y axis; n is the  vector of outer 

normal to the lateral boundary  ∑; SSTfTSTfST STzSzT ∂∂=∂∂=== /),(,/),(,, ααγγ , where  f 
is the known function of temperature and salinity, and ),( STf=ρ  is the equation of state of ma-
rine water, Δ  is two-dimensional  Laplace operator, STST ,,,,, νννμμμ ′′′′′′ are  the factors of horizontal 
and vertical viscosity and diffusion, in addition,  
 

δμμμ +=′ , S,TS,TS,T δμμμ +=′ , δννν +=′ , S,TS,TS,T δννν +=′ . 
 
It is assumed that the coefficientsδμ , S,Tδμ , δν и S,Tδν  are defined on the base of conjugate equa-
tions, the theory of small perturbations and the principle of duality of functionals [14, 21, 22]; 

0000 ,,, STvu  are known climatic functions of coordinates. Now, let us assume that we found the so-
lution of the problem (19-21) [1-22] and the received functions u, v and w we will consider as coef-
ficients in operator 1Λ . Then we have  
 
                                  ΦΛΦΛΦΛ 21 ′+=′      ,     ΦΛΦΛΦΛ S,T,21S,T ′+=′ , 

                                  ΦΛ udiv1 =  ,   zz2 ΦνΔΦμΦΛ ′−′−=′   ,   zzS,TS,TS,T,2 ΦνΔΦμΦΛ ′−′−=′ , 
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where  Φ is any function of  u, v, T and S. Other designations in the problem (19) - (21) are well-
known. In the problem (19) - (21) index (‘), meaning deviations of pressure, density, temperatures 
and salinity of sea water, are omitted. 
Let's assume, that the solution and input data of the problem (19)-(21) have the sufficient smooth-
ness providing existence and uniqueness of the solution of the problem [23-28]. 
        Let's consider vectors ϕ , F and matrixes A and B 
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= , 

 
Then the system of the equations (19) we shall write in the operational form  
 

                                                0A
t

B =′+
∂
∂ ϕϕ                                                                          (22) 

 
and as initial conditions we will assume 
                                              
                                              BFB =ϕ             at              t = 0,                                             
 
and the components of an vector-function ϕ  satisfy the boundary conditions (20).      

Let's find now the conjugated operator *A′  in relation to A′ . With this purpose we shall con-
sider Lagrangian’ identity  
 
                                                                ( ) ( )ϕϕϕϕ ,AA, *** ′=′ , 
 

where  ( )′= ******* S,T,p,w,v,uϕ  and   scalar product is determined by a ratio 
 

                                                            ( ) ∑∫∫∫
= Ω

Ω=
3

1
,

i
ii dhghg . 

 
Here ig  and  ih  are the components of the vector-function   g  и  h. 

Now we shall scalary multiply the equations of the system (19) by   
*

0uρ , *
0vρ , *w , *p , T

*
T /Tg γα , S

*
S /Sg γα , accordingly. Then, the received expressions we shall 

combine and integrate on time from 0 up to the some mt . Then, we receive 
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          Now we assume, that the functions *u , *v , *w , *T и *S  satisfy the following conditions   
 
               0u*

z =′ν , 0v*
z =′ν , 0* =w , *

T
*
zT QT =′ν , *

S
*
zS QS =′ν                      on   z = 0; 

                 0* =zu , 0* =zv , 0* =w , 0* =zT , 0* =zS                                     on   z = H;          (24) 
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*
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*
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u , *
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v , *
mt

T и *
mt

S  – are any functions. The left 
part of the equality (23) we shall transform so that outside of brackets under integral there were 
functions u, v, w, P, T, and S, and in brackets – the differential ratio containing functions  *u , *v , 

*w , *P , *T   and *S  [1, 2]. For this purpose with the help of partial integration, formulas Ostro-
gradsky-Gauss, boundary and initial conditions (20), (21), (24), (25), in view of the continuity equa-
tions  
 

0=udiv ,  0udiv
*
=  

 
and some transformations, separate expressions in (23) we will transform to a kind 
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where 0∑  is  the section of a cylindrical surface at a level z = 0. 
Let's substitute (26) - (30) in (23), then after corresponding transformations we receive 
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Let us assume that the functions *u , *v , *w , *P , *T and *S  satisfy the system of the conjugate equa-
tions  
                        

0/Plvuu 0
*
x

****
t =−+′+− ρΛ , 

0/Pluvv 0
*
y

****
t =−−′+− ρΛ , 

                                                 0)ST(gP *
S

*
T

*
z =++− αα ,                                               (32) 

                                                          0*** =−−− zyx wvu , 

                                                          0wTT *
T

**
T

*
t =−′+− γΛ , 

                                                         0wSS *
S

***
t S

=−′+− γΛ  
 
with boundary and initial conditions  (24, (25). Just as in case of the main problem here again we 
assume performance of conditions of smoothness of solutions of the conjugate problem.  
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          Now, let us multiply the equations of the system (19) by *
0uρ , *

0vρ , *w , *P , T
*

T /Tg γα  and 

S
*

S /Sg γα , respectively, then,  them we shell combine. After that we multiply the equations of the 
conjugate system  (32), by u0ρ , v0ρ , w , P , TT /Tg γα ,  SS /Sg γα , respectively,  and them  com-
bine. Then, the results let's subtract one of another and final expression we shall integrate on time 
from 0 up to  mt  and on area Ω. Then, in view of boundary conditions (20) and (24), analogically to 
(31), after transformations, we shall receive 
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Let us assume that 
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Then, because of  M0z TT ≡= , we have 
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and if we assume that 
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from (33) for the moment  mtt =  we have 
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where ααγ TTT gr = . 

 In the formula (35) 0000 ,,, STvu   are given at the initial moment of time, and *
0u , *

0v , *
0T и *

0S  
are solutions of the conjugate equations  (32) at the boundary conditions (24)–(25). 
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     With the help of the functional (35) it is possible to define the values of temperature anomalies 
on the free surface of the ocean. Moreover, to use them is not practically possible, because for each 
fixed point ( ) 000 y,x ∑∈  it is necessary to solve the conjugate problem (32), (24), (25). With the 
purpose of simplification of the problem, It is expedient to divide the ocean surface 0∑  by several 

parts, i.e. we shall assume U
n

1i
i00

=

∑=∑ , as  we shall define average values of temperature anomaly  

in everyone i0∑ . 
For this purpose in (33) we shall assume, that [1] 
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As our problem is specification of values of a field of anomaly of the temperature, given on the 
ocean free surface in each subarea i0∑ , therefore first of all follows to define average value of 
anomaly of temperature of century i0∑ . In this connection we shall enter into consideration a desig-
nation for average i0∑  on  temperature anomaly  at the moment of time mtt =  as follows:  
 

                                               ∫∫
∑

∑
∑

∑
=

i0

mt

i0

mt
i0M

i0
M dT1T , 

 
Then,  with taking into account (36), we have 
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in view of which and conditions (34) from (33) we shall receive 
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Thus, the problem about specification of values of average temperature anomaly  was re-

duced to the solution of the conjugated problem (32), (24),  (25) under condition of (34). 
Now, let’s consider the perturbed equation system: 
 
                                     0/ 01 =′′−′Δ′−′+′−′Λ+′ zzxt uuPvluu νμρ , 
                                     0/ 01 =′′−′Δ′−′+′+′Λ+′ zzyt vvPulvv νμρ , 
                                     ( ) 0STgP STz =′+′−′ αα , 
                                     0wvu zyx =′+′+′ ,                                                                                   (38) 
                                     01 =′′−′Δ′−′+′Λ+′ zzTTTt TTwTT νμγ , 
                                     01 =′′−′Δ′−′+′Λ+′ zzSSSt SSwSS νμγ  
 
at following  boundary conditions 
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            0/ ρτν xzzu ′−=′′ , 0/ ρτν yzzv ′−=′′ , 0=′w , 

               ( ) RTTT BMz −′−′=′′ βν , )( *** ESRSS nnMz −+′=′′ν                               on z = 0; 
               0=′u , 0=′v , 0/ =∂′∂ nT , 0/ =∂′∂ nS                                                on   ∑ ;          (39) 
               0=′zu , 0=′zv , 0=′w , 0=′zT , 0=′zS                                                 on  z = H . 
 
 As initial we shall accept climatic values 
 
            0uu ′=′ , 0vv ′=′ , 0TT ′=′ , 0SS ′=′                                                      at        t = 0.          (40) 
 
here xzxzxz δτττ +=′ , yzyzyz δτττ +=′ , BBB TTT δ+=′ , 000 uuu δ+=′ , 000 vvv δ+=′ , 000 TTT δ+=′ ,

000 SSS δ+=′ . 
        Now, let us multiply the equation  (38) by the conjugate functions 0

*u ρ , 0
*v ρ , 

*w , *P , TTTg γα /* and SS Sg γα /* , respectively, corresponding to the not perturbed (climatic) 
problem, and let's term by term combine, and the conjugate equations (32) we shall multiply 

0v ρ′ , w′ , P′ , TTTg γα /′ , and SS Sg γα /′    also we shall combine, then results of these operations 
we shall subtract from each other, the result we shall integrate on time in limits from 0 up to mt  and 
on the area Ω. Then, analogically to (37) for each subarea i0∑  we shall receive the functional 
 

                          

( )

( ) .
0

0
***

0
*
00

*
00

*
00

*
00

0

0

∫ ∫∫

∫∫∫

∑

Ω

∑

∑⎥
⎦

⎤
⎢
⎣

⎡
+′+′+′−

−Ω⎥
⎦

⎤
⎢
⎣

⎡
′+′+′+′−=′

m

i

mt

t

B
T

T
yzxzT

S

S

T

T
TM

dtdRTTgvur

dSS
g

TTgvvuurT

β
γ
α

ττ

γ
α

γ
α

ρ

                     (41) 

 
Taking into account, that 
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and subtracting from (41)  equality  (37),  we come to functional  for average anomaly of tempera-
ture for each subarea  i0∑  (i = 1,2,...,n) at the moment mt . Thus, we have  
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and with using the formula 
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we determine the perturbed state of anomaly of temperature in subareas i0∑  (i = 1,...., n) at the 
moment mt . We define the perturbed state of anomaly  of salinity in the subareas i0∑  (i = 1,...., n) 
at the moment mt . 
 Further the perturbation problem (38)-(40) is salving.                                                             
In the boundary conditions on the ocean free surface considered here the specified values for tem-
perature anomaly at the moment mt , defined under formula (43) are used. 
          Besides, the specified values of factors of turbulent diffusion and viscosity δμμμ +=′ , 

δννν +=′ , STSTST ,,, δμμμ +=′  and STSTST ,,, δννν +=′  are used,  that essentially raises adequacy 
of the results received on the perturbed problem with the existing condition of distribution of geo-
physical fields beforehand specified moment of time mt . Thus, certain fields (received as a result of 
the solution of the perturbation  problem) should be used as the initial data at consideration of prog-
nostic model in the range of time from t = mt  till some moment of time t = T. 

With taking into account (22), the sequence of realization of the algorithm on preparation of 
the input information at the initial time mtt =  for the prognostic three-dimensional problem of the 
ocean dynamics  consists from following  stages: 

1. On the basis of conjugate equations, the theory of small perturbations and principle of du-
ality, we define values δμ , ST ,δμ ,δν , ST ,δν  and find  

 
              δμμμ +=′ , STSTST ,,, δμμμ +=′ , δννν +=′ , STSTST ,,, δννν +=′ ; 
 
2. The problem 

                                             0~~
=′+

∂
∂ ϕϕ A

t
,   

                                             0~ =ϕ    at    t=0 
 
is solving. Input data used in the boundary conditions are climatic data. The problem is solved to 
achive a quasistationary state. 

3. Within the time interval mtt ≤≤0  the problem 
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1

===′+
∂
∂ tatA

t mt
ϕϕϕϕ   

 
is solving. The input data used in the boundary conditions on the ocean free surface are climatic 
data.  

4. In the time interval mtt ≤≤0  with consideration subareas i0∑  (i = 1,...,n)  n conjugate 
problems (32), (24), with initial conditions 0* =

mt
u , 0* =

mt
v , 0* =

mt
T , 0* =

mt
S are solved. In the 

boundary conditions  known functions are climatic functions; 
5. Let are known the fluxes of heat  ( )BMT TTQ δδβδ −=  and salt  ( )*** ESRSQ nnS −+= δδ   

on the sea surface and values of  xzδτ ,  yzδτ , corresponding to wind stress,  at any moments of time 
previous to prognostic time interval. These values within the time interval mtt0 ≤≤ are determined   
by solution of problems of atmosphere and ocean dynamics or as a result of direct measurements. 
           Then, if we solve the problem (38) – (40) in the range of time  mtt0 ≤≤    with using of cli-
matic initial data at t = 0 (the solution of the problem from point 3) step by step, the ocean will 
adapt to the real perturbations on the sea surface; 
         6. The functional  
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 and temperature anomaly on the ocean free surface   
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are calculating. 
Here 000 uuu −′=δ , 000 vvv −′=δ , 000 TTT −′=δ , 000 SSS −′=δ , 0000 ,,, STvu  are climatic values, 
and 0u′  , 0v′  , 0T ′  , 0S ′  are solutions of the problem from  point 5 at the moment  mt ; 
           

7. The perturbation  problem  is salving, where in boundary conditions at definition of heat 
fluxes on the free surface the function i

mtMT 0∑′ , defined in the previous paragraph, is used. As the ini-

tial data at t = 0 the solution of the problem from the point 5 is assumed, i.e.,  
mt

uu ′=′0  , 
mt

vv ′=′0  , 

mt
TT ′=′0  and 

mt
SS ′=′0 . Further we return to the solution of the problem from point 3. Thus, we cy-

cle calculations for the subsequent specification of values of fields of temperature anomalies  on the 
free surface of the ocean at the moment mt . 
          At this stage the received solution of the problem for time moment mt , i.e., 

mt
u′  , 

mt
v′  , 

mt
T ′  and 

mt
S ′  are  used as the initial data for solution of the prognostic model of dynamics of the baroclinic 
ocean in the range of time Tttm ≤≤ . 

Analogically  there is possible to receive functionals for calculation of average anomaly of 

the salinity i

mtMS 0∑
and i0

mtMS
∑
′  . We have  

 

             

( ) ( )

( )∫ ∫∫

∫∫∫

∑

Ω

∑

∑⎥
⎦

⎤
⎢
⎣

⎡
−+++++−

−Ω⎥
⎦

⎤
⎢
⎣

⎡
+++−=

m

i

mt

t

nnM
S

S
B

T

T
yzxzs

S

S

T

T
SM

dtdESRSS
g

RTTgvur

dSS
g

TTgvvuurS

0
0

*******

*
00

*
00

*
00

*
000

0

0

)(
γ
α

β
γ
α

ττ

γ
α

γ
α

ρ

        (44) 

and  
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where      ααγ ssS gr /=  , βγνα gss /3′= . 
In this case in boundary conditions (24) on the ocean surface we assume that 
  
                                         **

MT TQ β=   и   **
SS fQ =   at   z = 0, 

 
where *

Sf  is defined analogically to *
Tf . 
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Taking into account (44) and (45), analogically to (42), we obtain   
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and on a formula 
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we define the perturbed state for a salinity anomaly in subareas i0∑  (i = 1,...., n) at the time moment   

mt . 
 
3. Conclusion 
 
The algorithm on the specification of temperature anomalies on the ocean sea surface, considered in 
the present article, may be used in numerical calculations of the ocean dynamics.  
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О подготовке начальных данных для прогностической задачи 

динамики бароклинного океана 
 

Автандил А. Кордзадзе 
 

Резюме 
        

Как известно, качество гидрофизических полей, полученных в результате реализации 
прогностической модели динамики бароклинного океана,  значительно зависит от качества 
входных данных. В настоящей работе, на основе сопряжённых уравнений и теории 
возмущении предлагается алгоритм уточнения данных наблюдений о нестационарных 
процессах, участвующих в граничных условиях на свободной поверхности моря для 
прогностической задачи динамики океана. С целью удобства, рассмотренный в настоящей 
работе алгоритм о подготовке начальных данных, сначала рассматривается на примере 
двумерного уравнения переноса-диффузии субстанции в вертикальной плоскости xoz, а 
затем для трёхмерной задачи динамики бароклинного океана.  

 
 

sawyisis monacemebis momzadebis Sesaxeb baroklinuri 
okeanis dinamikis prognozuli amocanisaTvis 

 
avTandil a. korZaZe 

 
reziume 

 
rogorc cnobilia, baroklinuri okeanis prognostikuli modelis re-

alizaciis Sedegad miRebuli hidrofizikuri velebis xarisxi mniSvnelov-
nadaa damokidebuli modelSi Semavali monacemebis xarisxze. mocemul naS-
romSi SeuRlebul gantolebaTa da SeSfoTebis Teoriis safuZvelze Semo-
Tavazebulia arastacionarul procesebze dakvirvebis monacemTa dazuste-
bis algoriTmi, romlebic gamoiyeneba zRvis Tavisufali zedapirze sasaz-
Rvro pirobebSi okeanis dinamikis prognozul amocanaSi. moxerxebulobis 
mizniT, naSromSi ganxiluli sawyisi monacemebis momzadebis algoriTmi 
ganixileba jer substanciis organzomilebiani  gadatana-difuziis gan-
tolebis magaliTze xoz sakoordinato sibrtyeSi, xolo Semdgom baroklin-
uri okeanis dinamikis samganzomilebiani amocanisaTvis.  
 
 

 

                     
        

 
 
 


