Electron transport across magnetic field in gas-discharge nonneutral electron plasma

Main Article Content

Nikoloz A. Kervalishvili

Abstract

For investigation of the influence of vortex structures and asymmetry of electric and magnetic fields on the processes of electron transport across the magnetic field, the model of electron sheath considered in [1,2] has been used. The investigations were carried out by comparison and analysis of experimental and theoretical dependencies of discharge current on the magnetic field and on the value of disturbance of field symmetry. The obtained results give evidence that the disturbance of field symmetry causes the neoclassical transport of electrons, and the influence of vortex structure on the discharge electron sheath leads to the transverse mobility of electrons strongly different from that of classical.

Published: Mar 31, 2015

Article Details

How to Cite
Kervalishvili, N. A. (2015). Electron transport across magnetic field in gas-discharge nonneutral electron plasma. Journals of Georgian Geophysical Society, 17(C). Retrieved from https://ggs.openjournals.ge/index.php/GGS/article/view/1642
Section
Articles

References

1. Kervalishvili N.A., Kervalishvili G.N. The model of gas-discharge nonneutral electron plasma. arXiv:1311.4397 [physics.plasm-ph], 2013, 16pp.

2. Kervalishvili N.A., Kervalishvili G.N. Quasi-stationary model of gas-discharge nonneutral electron plasma. J. Georgian Geophysical Society, 2008, v. 12B, pp. 105-124.

3. Knauer W., Lutz M. A. Measurement of the Radial Field Distribution in a Penning Discharge by means of the Stark Effect. Appl. Phys. Lett., 1963, v. 2, N 6, pp. 109 – 111.

4. Dow D. G. Electron-Beam Probing of a Penning Discharge. J. Appl. Phys., 1963, v. 34, N 8, pp. 2395 – 2400.

5. Kervalishvili N. A. Effect of anode orientation on the characteristics of a low-pressure discharge in a transverse magnetic field. Zh. Tekh. Fiz., 1968, v. 38, N 4, pp. 637-645; Sov. Phys. Tech. Phys., 1968, v. 13, N 4, pp. 476-482.

6. Barkhudarov E. M., Kervalishvili N. A., Kortkhonjia V. P. Anode sheath instability and high-energy electrons in a low-pressure discharge in a transverse magnetic field. Zh. Tekh. Fiz., 1972, v. 42, N 9, pp. 1904-1908; Sov. Phys. Tech. Phys., 1973, v. 17, N 9, pp. 1526-1529.

7. Kervalishvili N. A. Rotational instability of a nonneutral plasma in crossed fields E H and generation of electrons of anomalously high energy. Fizika Plazmy, 1989, v. 15, N 2, pp. 174-181; Sov. J. Plasma Phys., 1989, v. 15, N 2, pp. 98-102.

8. Kervalishvili N.A., Zharinov A.V. Characteristics of a low-pressure discharge in a transverse magnetic field. Zh. Tekh. Fiz., 1965, v. 35, N 12, pp. 2194-2201; Sov. Phys. Tech. Phys., 1966, v. 10, N 12, pp. 1682 – 1687.

9. Kervalishvili N.A., Kortkhonjia V.P. Low-pressure discharge in a transverse magnetic field. Zh. Tekh. Fiz., 1973, v. 43, N 9, pp. 1905-1909; Sov. Phys. Tech. Phys., 1974, v. 18, N 9, pp. 1203-1205.

10. Kervalishvili N. A., Kortkhonjia V.P., Machabeli G. Z. Electron motion and structure of the anode sheath with a deviation from E H in a low-pressure discharge. Zh. Tekh. Fiz., 1975, v. 45, N 4, pp. 811–819; Sov. Phys. Tech. Phys., 1976, v. 20, N 4, pp. 512–516.

11. Barkhudarov E. M., Kervalishvili N. A., Kortkhonjia V. P. Investigations of anomalously high energy electrons in low-pressure discharge in a transverse magnetic field. Pros. X ICPIG, Oxford, England, 1971, p. 138.

12. Malmberg J. H., Driscoll C. F. Long-time containment of a pure electron plasma. Phys. Rev. Lett., 1980, v. 44, N 10, pp. 654-657.

13. Driscoll C. F., Malmberg J. H. Lenght-dependent containment of a pure electron-plasma column. Phys. Rev. Lett., 1983, v. 50, N 3, pp. 167-170.

14. Keinigs R. Field-error induced transport in a pure electron plasma column. Phys. Fluids, 1984, v. 27, N 6, pp. 1427-1433.

15. Eggleston D.L., O’Neil T.M., Malmberg J.H. Collective enhancement of radial transport in a nonneutral plasma. Phys. Rev. Lett., 1984, v. 53, N 10, pp. 982-984.

16. Driscoll C.F. Pure electron plasma experiments. Proc. Of 3rd Workshop on EBIS Sources and Their Applications, Cornell univ., Ithaca, NY, 1985.

17. Driscoll C.F., Fine K.S., Malmberg J.H. Reduction of radial losses in a pure electron plasma. Phys. Fluids, 1986, v. 29, N 6, pp. 2015-2017.

18. Eggleston D.L., Malmberg J.H. Observation of an induced-scattering instability driven by static field asymmetries in a pure electron plasma. Phys. Rev. Lett., 1987, v. 59, N 15, pp. 1675-1678.

19. Hart G.W. The effect of a tilted magnetic field on the equilibrium of a pure electron plasma. Phys. Fluids B, 1991, v. 3, N 11, pp. 2987-2993.

20. Eggleston D.L., O’Neil T.M. Theory of asymmetry-induced transport in a non-neutral plasma. Phys. Plasmas, 1999, v. 6, N 7, pp. 2699-2704.

21. Kriesel J.M., Driscoll C.F. Two regimes of asymmetry-induced transport in non-neutral plasmas. Phys. Rev. Lett., 2000, v. 85, N 12, pp. 2510-2513.

22. Robertson S., Espejo J., Kline J., Quraishi Q.,Triplett M.,Walch B. Neoclassical effects in the annular Penning trap. Phys. Plasmas, 2001, v. 8, N 5, pp. 1863-1869.

23. Kabantsev A.A., Yu J.H., Lynch R.B., Driscoll C.F. Trapped particles and asymmetry-induced transport. Phys. Plasmas, 2003, v. 10, N 5, pp. 1628-1635.

24. Eggleston D.L.,McMurtry K.J., Kabantsev A.A., Driscoll C.F. Effect of axial magnetic field variations on asymmetry-induced transport in a non-neutral plasma trap. Phys. Plasmas, 2006, v. 13, N 3, pp. 032303-1-5.

25. Dubin D.H.E. Theory and simulations of electrostatic field error transport. Phys. Plasmas, 2008, v. 15, N 7, pp. 072112-1-26.

26. Dubin D.H.E., Kabantsev A.A., Driscoll C.F. Enhanced superbanana transport caused by chaotic scattering across an asymmetric separatrix. Phys. Plasmas, 2012, v. 19, N 5, pp. 056102-1-7.

27. Stoneking M.R., Growdon M.A., Milne M.L. Peterson R.T. Poloidal E x B drift used as an effective rotational transform to achieve long confinement times in a toroidal electron plasma. Phys. Rev. Lett., 2004, v. 92, N 9, pp. 095003-1-4.

28. Kervalishvili N. A. Solitary vortices in gas-discharge nonneutral electron plasma. J. Georgian Geophysical Society, 2005, v. 10B, pp. 93-106.