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AbstractAbstractAbstractAbstract    

Solve the inverse problem, which is aimed at modeling a discrete frequency spectrum of 

seismic body waves generated by artificially weak point explosion or a natural earthquake (M ≤ 4). 

Proposed a spherical model of the hollow area of the point explosion and used a well-known 

analytical method for modeling the hydro-mechanical oscillations of a liquid drop. Innovation in 

the  applied work is the use of a complete solution of the radial Euler equation. Such a modification 

of the classical scheme, which uses only an internal solution is mathematically quite correct, 

because it means virtuality  of seismic source’s elastic oscilation. As a result, with the help of the 

discrete spectrum of seismic body waves can be determined the linear parameters and total energy 

of  point explosion (weak earthquake) that is  approximated as a hollow body  with  spherical 

shape. 
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Introduction. Introduction. Introduction. Introduction. Despite the similarity of effects that accompany earthquakes and explosions, 

these phenomena have a different nature . Primarily, the point source of explosion can be located 

anywhere while hypocenter of  earthquake is always in seismically active zone and significant 

tectonic stresses area. The energy  released during an earthquake and a point explosion in the focal 

zone is distributed according to the same pattern from a mechanical point of view: a significant 

portion of this energy expended in irreversible changes in the sources area , the rest part of its 

generates the body and surface seismic waves. The point explosion’s energy comparable with the 

weak earthquakes (M ≤ 4) (perhaps with the exception of particularly powerful nuclear explosions),  

during which most of the energy of elastic deformation is consumed to generate the seismic body 

waves. There are differences in the method of measuring the total energy released during moderate 

and strong earthquakes and point explosions. However, before the era of underground nuclear 

explosions was assumed that in case of lack of dispersion, the amplitude of the elastic body waves 

of point explosion should be proportional to the square root of the oscillations energy density (as 

for earthquake). However, analysis of the underground nuclear explosions’s series data in 1958, 

that in fact are analogous to the point explosions, this is not confirmed. The relationship between 

the explosion‘s energy and the amplitude was linear, so new model of explosion source have been 

proposed [1]. According to this model, the area of any explosion source is a special, so-called zone 
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violation, in which energy is transferred and absorbed by nonlinear laws. It is believed that the 

radius of the zone is proportional to the cube root of the energy of the explosion. Further, beyond 

the violations zone, disturbance is linearly elastic in the medium. It is assumed that propagating 

compression wave here are not subjected to the dispersion. In this case, the individual harmonics 

of the body waves can can propagate independently. Obviously, such a situation is ideal and is 

expected wave propagation without any obstacles, which is possible only in a completely 

homogeneous medium. In fact, analysis of of seismic waves propagation can be quite complex in 

the elastic medium, not only because of the heterogeneity of the environment and the absorption 

of waves, but also the existence of a free boundary, for example: the earth's surface and the fault. 

Therefore, it was suggested that the medium is uniform in a sufficiently large area, the radius of 

which substantially exceeds the radius of the explosion energy release,  in other words,  the zone of 

nonlinear transformations. In some studies, factually  the model in [1] has been used to simulate 

the change of the radial stress at the interface of the inelastic and elastic region [2]. 

Model of a point explosion.Model of a point explosion.Model of a point explosion.Model of a point explosion. The purpose of work [1] was an analytical justification of the 

relationship between soil displacement and the explosion energy carried out by body seismic 

waves. Obviously, such a task is straightforward because suggests a correlation between the known 

parameters: given energy of the explosion and the observed value of soil displacement. However, 

besides displacements soil informative are also themselves seismic wave frequency spectrum, 

which is also dependent on the energy of the explosion. If we consider that the heterogeneity of 

the medium influenced  less significant effect on seismic waves, in particular, on their frequency, 

an attempt to study the relationship between the explosion energy and body waves can be 

considered as a perspective task. It should be noted that assuming no dispersion of body waves, in 

contrast to [ 1], it is possible to solve the inverse problem, i.e. determine the explosion energy by 

body waves frequency spectrum. An attempt to solve such a problem has been undertaken in the 

work [3]. Physical conditions of the work actually coincide with the statement of the problem in 

[1] as it also assumes that the point explosion is followed by an avalanche-like release of energy 

resulting in the generation of shock waves and plastic deformations. So there should be a zone of 

non-linearity. On the border of this zone must establish a balance between the pressure force and 

the elastic force of the environment. It is evident that the balance of forces arise only if the energy 

density of the explosion will be commensurate with the energy density of the elastic deformation. 

The front propagation of disturbances caused by a point explosion is supposed to be radial in a 

homogeneous incompressible medium. Spherical symmetry is violated with increasing distance in 

an inhomogeneous medium. However, in any case, the deviation from sphericity is unlikely to be 

so significant that the boundary of the plastic deformation of the explosion could not be 

approximated by a spherical , or more complex , by the surface of the rotation ellipsoid. The same 

form can be assumed also for the outer boundary of linear elasticity area,  if we neglect the 

inhomogeneity of the medium and to postulate the absence of free boundaries. In this case, in work 

[3] was proposed hypothesis that body seismic waves are the result of self mechanical oscillations 

of the body, which is an spatial abstraction of the linearity zone around the point explosion source. 

Obviously, these oscillations induced by the elastic force and should have a discrete frequency 

spectrum.  In the simplest case, discussed body may have the shape of a hollow sphere, the inner 

radius equal to the radius of the zone violation. The next step is to approximate the area of a point 
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explosion by hollow rotation ellipsoid. This figure has a lower degree of symmetry comparable 

with the sphere. Due to this the degenerate oscillations will take place. Therefore  effects of shear 

deformation can be neglected at a point explosion, unlike earthquakes. This is essential since 

simulation of the vibrational spectrum,  generated by a strong earthquake is very challenging. 

During the earthquake, as a rule, there are considered as body waves , so surface seismic waves . 

Analytical solution of this problem is obtained only in the case of spherical symmetry by 

presenting the shear modulus as a sum of normal modes of vibrations [4]. 

Statement of the problem.Statement of the problem.Statement of the problem.Statement of the problem. The problem of accurate determination of the total energy released 

by an earthquake, is the main task of seismology. It is known that some of the total energy, the so-

called seismic energy, is consumed to generate the body and surface seismic waves. Unlike natural 

earthquakes, the  total energy is known in advance during point explosion. Furthermore, for an 

underground nuclear explosions has been determined that the approximately 5-8% of the total 

energy passes to the elastic seismic waves  [5,6]. Therefore, if the total energy of the explosion is 

known, there is no need to determine the seismic energy by seismic data. However , estimation of 

total energy, during the earthquake, is a problem. It is obvious that the direct transfer of the result, 

which is valid for explosions, to an earthquake is incorrect. It is known that seismic energy is 

dependent on the source volume  [7] . In the case of moderate and strong earthquakes this area is 

difficult to determine because of the considerable scatter of aftershocks in time and space. 

Therefore, proportion of seismic energy in the total energy can very substantially changed with 

increasing earthquake magnitude. However, for small earthquakes, like an nuclear and tecnical 

explosions, almost all the seismic energy transfer in body waves. Therefore, the relationship 

between seismic energy and the total energy of the earthquake in both cases varies in the same 

range.  It is obvious that, like explosions,  for small earthquakes seismic source zone is a violation 

within the meaning of [1] . 

 Assessment of the explosion volume, and consequently, the seismic energy, when we know 

its total energy, it is not difficult . During the earthquake the total energy is unknown that sould be 

estimated by seismic data. Therefore, any attempt that simplifies the tedious process of seismic 

source volume determination can be considered relevant. In particular,  it appears that the volume 

of weak earthquakes source can be quite easy define following [3], the essence of which is given 

below. 

Scheme of mathematical modelingScheme of mathematical modelingScheme of mathematical modelingScheme of mathematical modeling. The physical analogy with hydromechanical natural 

oscillations of a liquid incompressible drop of spherical configuration has been used as the basis of 

the model proposed in [3].  It is known that small perturbations of its surface is able to maintain 

the shape of a drop due to the action of capillary forces  [8]. If it is  assume that the generation of 

body waves associated with perturbations of the boundary of a hollow elastic body, we can use the 

mathematical scheme of self hydro-mechanical oscillations of a spherical drop. As it was shown in 

[8] this scheme can be generalized to the case where the drop has shape of elongated rotation 

spheroid. Obviously, for the area of a point explosion such  shape is more appropriate than a 

sphere. Though,  to estimate the volume  of seismic source is enough to use the result, which 

corresponds to the most simple spherical symmetry. According to [8], a mathematical model is 

correct if the amplitude of the oscillation or radial displacement of the boundary of the hollow 

body modeling area of point explosion considerably small compared with the characteristic linear 
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dimension of the body. Additionally, the oscillation speed of the hollow body surface should be 

substantially less than the velocity of shock waves generated in the nonlinear transformation zone 

or in seismic source area.  It is obvious that both of these requirements are performed  that is the 

necessary condition for small perturbations causing the linear elasticity, and generating self 

mechanical oscillation of the body, identified with the area of the point explosion.  It is believed 

that regardless of the site condition, this area despite a small radial displacement of its borders  is 

incompressible and homogeneous , both before and after an explosion ( or a weak earthquake). 

Consequently, the oscillation  motion of the hollow body obeys the Laplace equation   

                                 0=∆ψ ,                                                 (1) 

where ψ  is potential,  oscillation speed -  ψgradV = . 

In a spherical coordinate system, the condition of equilibrium boundary of the hollow body,  

modeling area of  a point explosion, is given with the Laplace formula for a liquid drop 
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where P1 and P2 are the pressures respectively inside and outside the sphere, R1 and R2 are the 

principal curvature radii of the oscillating surface. The coefficient of capillary surface tension 

giving the elasticity effect is replaced by the product of the uniform compression modulus K  by 

the characteristic linear dimension of the  sphere boundary L  
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where E is the tension modulus (Young’s modulus) and σ - the Poisson coefficient.  

Therefore the difference between the pressures can be defined by means of the expression [8] 
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where u is the radial displacement producing the oscillation of the spherical surface, ρ  - 

density of the medium, g   -gravity force acceleration. In the Spherical system, the displacement 

velocity is related with the motion potential by the expression  
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Condition (6) is valid if the potential will have the form of a standing wave 

            ( ) ti
rFA e ωϕθψ ,,⋅= ,   constA = ,                            (7) 

 where the function ( )ϕθ ,,rF  satisfies the Laplace equation (1). As is well known, any 

solution of this equation can be represented as a linear combination of volumetric spherical 

functions: 

( ) ( ) ( ) ( )ϕθϕθ ΖΥΧ= rrF ,,  where ( )rΧ - radial function, ( )θΥ, = m
nP ),(cosθ - the Legendre 

function, ( )ϕΖ =
ϕim

e .  In the work [3] is used the function: ( )1+−+= n
n

n
n rBrAΧ , that is full 

solution of the Euler radial equation. This is different fundamentally from the solution in [8], 

where the potential in  (7) represented only by  the inner part of the radial function ~ n
r . As a 

result, after standard transformations, the discrete spectrum of natural frequencies  of a hollow 

sphere can be obtained 
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where  2≥n  (n = 0 corresponds to a state at rest, n = 1 to translational motion. 

 

Expression (8) differs from the formula defining oscillations of a solid spherical drop.  First , 

in (8) is presented as a multiplier  value of compression modulus   and density of the medium, 

which is the square of the velocity of body  waves [3]. Addition , solution for a solid sphere must be 

valid everywhere, including the focal point. So in classical scheme   only the inner solution of the 

Euler equation is used as  a solution of the form: 
( )1+− n

r  at point r = 0 is divergent. For a hollow 

body this problem does not exist and therefore we can use a general solution. As a result, as is seen 

from (8), the frequency should not be real, it may be has an imaginary value too. Such a situation is 

quite favourable when modelling the point explosion region whose inner surface must bound the 

volume in which shock waves propagate and plastic deformations take place. An example of a 

relatively simple formula for a hollow sphere of finite thickness clearly shows that it is only by 

means of a general solution of the Euler equation that we can define the size of the region where 

elastic forces may generate seismic waves. For this purpose, it is necessary to determine the 

constants of a complete radial function by introducing a radius of the boundary between the linear 

and nonlinear zones. On this surface, according to the model, the frequency of elastic waves sould 

be zero. Thus, from (8) we have  

( ) ( )21 1 +−− += n
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Consequently, because of the relation (9) constants in the formula (8) should be excluded. 

After the introduction of the parameter R, the characteristic linear dimension of the hollow body 

also be defined: L = (r - R). Finally the following expression for discrete frequency spectrum has 

been obtained 
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were α =(1-R/r), 
2

1









=

ρ

K
Vm

- velocity of longitudinal body wave without taking into account 

the shear deformation. Velocity of primary seismic wave: 
( ) ( )

2

1

13

2

213









+
+

−
=

σρσρ

EE
Vp

. It almost 

exceeds the speed of secondary shear wave 
2

1









=

ρ

G
Vs

average by a factor 1.7 in any environment 

(
( )σ+

=
12

E
G  -transverse shear modulus). So velocity mV   ≈ 0.8

p
V . 

Discussion of the inverse problem.Discussion of the inverse problem.Discussion of the inverse problem.Discussion of the inverse problem. The aim of this work is to show the way for a relatively 

simple solution of the inverse problem for the hollow sphere approximation, when two linear 

parameter of a point explosion were defined: the radii of the plasticity and linear elasticity zones.   

Besides the physical parameters of the considered medium it is assume that the spectrum of point 

explosion frequencies is also the given one, then we can define the unknowns R and r. In fact, the 

problem is in the knowledge of the fundamental frequency 2ω  (n=2), as in a homogeneous medium 

2

3

ω

ω
≈ 2. Therefore, the spectral analysis of point explosion is necessary to solve the inverse 

problem, which should give the value of the fundamental frequency of seismic body waves.   The 

desired radius can be determined by the first two equations (9) corresponding frequencies 2ω  and 

3ω .  

A distinctive feature of this work is to neglect of the effect of shear deformation and use the 

modulus for compression as a parameter of the elastic properties of the Earth's environment. This 

assumption is justified in the case where the power of a point explosion is not higher than the 

power of weak earthquakes (M≤4).  According to [2], for sufficiently powerful underground 

nuclear explosions, when the transverse seismic waves became visible, their fundamental 

frequency is given by equation 

                                        
R

Vs2
0 =ω ,                                                                        (10) 

where R is the radius of the surface elastic wave generation. Obviously, in the case of the 

expression (9) yields the fundamental frequency of the same order as that of the expression (10). 

It is notable that one solution of task is known to determine the frequency spectrum of the 

radial natural oscillations of an elastic sphere. Physically, it is obvious that realization such 

oscillations is possible only when the speed of displacement changes is directed along a radius and 

depends only on coordinate r [8,10].   According to the boundary condition on the surface of the 

sphere, the radial component of the strain tensor is equal zero. The problem of periodic oscillations 
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in time reduces to the general wave equation for the potential movement. The solution of this 

equation, which is valid throughout the volume of a sphere, including its centre, has the form 

                                   tie
R

kR
A ωϕ −=

sin
   .    (11) 

Due to equation  (11) and the boundary conditions resulting from the  Hooke’s condition on 

the surface R = r, the transcendental equation was obtained for kr 

                              
( )[ ]225.01

1

krVVkr

tgkr

sp−
=  , (12), 

r
k

1
~  -is the wave number. The roots of this transcendental equation (the exact analytical 

solution of which is impossible) determine the frequency of natural oscillations of an elastic sphere. 

However it is possible approximate analytical or numerical solution, after which the fundamental 

frequency of the radial oscillations of an elastic sphere is determined by the velocity of the 

longitudinal wave: kω =
p

V k. 

Thus, using the formulas (9) and (10), as well as the numerical solution of equation (12) when 

the velocity ratio is 1.7, it is possibility to compare different models of elastic oscillation of point 

explosion. The radius value of linear zone should be considered as the core defined by the 

expression (9). The underground nuclear explosions represent the most convenient case as all 

parameters are known for comparative analysis. It is suitable, for example, the very first 

underground nuclear explosion conducted in Nevada in 1957 [11]. The wave effects of this 

explosion were well studied.  That is necessary to test the effectiveness of our model and the 

comparison with the parameters obtained from other models. Power of the explosion in Nevada 

was 1.7  Kt  trotyl  (equivalent M ≈ 4 ), that is corresponding to an energy E = 12
104,7 ⋅  J. 

Now it should be defined the fundamental frequency, which is being main parameter in the 

formula (9). It is believed that in the case where the magnitude is known, it is possible not to use a 

spectral analysis and use the empirical relationship between the period and magnitude. However, 

in the range M = / 3-5 / such a relation is not defined. There is the equation that is considered fair 

for small magnitudes [12] 

                                               79.147.0lg −= MT .                                    (13)  

According to this equation, the main (peak) frequency should be ≈ 2.4 Hz when M ≈ 3. 

Obviously, for M ≈ 4, it will be even less. In fact, for the explosion in the Nevada, main frequency 

was significantly greater, because fixed frequency were in the ranged / 6-40 / Hz. Consequently, 

the fundamental frequency of this interval should be considered as 6 Hz. However, it should be 

noted that during the arrival of the first head wave there were two peaks of frequency 3 Hz and 7.5 

Hz at the same time. Then, after considerable delay, there were two peaks at 10 Hz and 5 Hz.  This 

is not a very significant difference from the frequency of the first registered interval.  This may 

have been caused by heterogeneity of the medium, as well as by the records error.  The 

observations were made at a distance of about 600 km from the explosion site. Due to mention 

above appropriateness of the formula (13) seems doubtful. 

Thus, the frequencies: 2ω = 6 3ω = 12 Hz were used to determine the characteristic radii of the 

Nevada explosion from formula (9). At the same time, the most probable value of the velocity 
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should be used, which, according to our model, can be assumed equal the velocity rate of body 

waves 6.1 km / s [11]. Consequently, since mV   ≈ 0.8
p

V , we will have 
p

V = 7.6 km / s. As a result, 

the specific values have been obtained for fundamental and first harmonic from the two equations 

(9) characterizing the area of underground nuclear explosions r = 1.84 km (the radius of the surface 

of the generation of body waves) and R = 1 km (radius of the seismic source). 

For comparison the well-known empirical formula for seismic source radius (in kilometers) 

and the magnitude can be used [13] 

 

                              lg R=-1.67+0.42M   .                                        (14) 

 

According to this formula R ≈ 1 km, that is identical to the value obtained by  our model for 

M ≈  4.        Using R we can determine the volume of the seismic source 3

3

4
RVc π= and seismic 

energy cc eVE = , where e  is  the density of the elastic strain energy. According to [5,6,12], this 

parameter is e ≈ 1 40−  J . Seismic energy is approximately 5-8% of the total energy of the explosion, 

so its value will be ( ) 12
104,85 ⋅÷  J, which correspond to the nuclear explosions with power in the 

range of  /2-1.2/ kt trotyl. Thus, in this case a good agreement have been established between the 

known value and corresponding interval of the modelled value of the total energy of an 

underground nuclear explosion in by the formula (9). Obviously, it is necessary to evaluate the 

quantitative effect of classical mathematical scheme's modification, which is the basis of our model. 

For this should be compared the result obtained for the hollow body with the result corresponding 

to a continuous area for the same value of the fundamental frequency. In this case, in the formula 

(9) must be regarded as R= 0, the following expression will be obtained from which we can 

determine the radius of the body, approximating the area of a point explosion 
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From the equation (15) for 2ω = 6 Hz we obtain: r ≈ 1, 95 km. If this magnitude is considered 

as the radius of the source, then the total energy of a point explosion will have a range that is much 

greater than the energy of the explosion in Nevada: E= ( ) 13
108.55.3 ⋅÷ J. Thus, if this range is 

compared with a range derived above for the hollow body, the efficiency of our model giving real 

value of the energy is quite apparent. 

For comparative analysis, the main frequency can be identified, which is given by equation 

(12) and formula (10). For this we use the radius of the area of the point explosion: r ≈ 1,85 km, 

because  according to the formula (9) it corresponding to the frequency 2ω  = 6 Hz. In particular, 

the first root of the numerical solution transcendental equation (12) is kr = 0.5. Since kω  =
p

V k, for 

k = 1 / r, and 
p

V  ≈ 7.6 km / s, we obtain:
 kω  ≈  2 Hz. Further, in formula (10) is presented the 

velocity of shear wave. Its value when 
p

V ≈ 7.6 km / s, is equal to: sV ≈ 0.6
p

V ≈ 4.6 km / s. 

Therefore, according to this model, the fundamental frequency 0ω =5 Hz. Based on these estimates, 

it can be concluded that in most cases there are small difference between the results of the formula 

(9), equation (12) and (10). But it is apparent disagreement with the empirical relation (13). These 
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facts serve as a clear demonstration of the effectiveness of our own model for mechanical vibrations 

of the point explosion.  In particular, it is the only one using only the velocity of seismic body 

waves, as well as their fundamental frequency and the first harmonic explicitly defines the volume 

of the point explosion and its total energy.  

For clarity of the formula (9), figure 1 illustrates the dependence of the radii r and R on the 

fundamental frequency 2ω  when the ratio  
2

3

ω

ω
≈2. Here a seismic body wave velocity is mV  ≈ 6.1 

km / s. 

It should be noted that the assumption of the harmonic nature of the seismic waves is quite 

rude. This requirement becomes very hard when data are recorded on a great distance from the 

explosion or the weak earthquake. Obviously, in the real environment, due to its heterogeneity, 

the ratio between the fundamental frequency and the first harmonic will change. During the 

solution of the inverse problem, this ratio should be determined only by the harmonic analysis of 

the data. 

 

 

Figure 1. The dependence of the radii r (solid line) and R (dash line) on the fundamental frequency 
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diskretuli sixSiruli speqtris modelireba, romelTa generaciis mizezs warmoadgens xelovnuri 

wertilovani afeTqeba an susti bunebrivi miwisZvra (M ).  gamoyenebulia siTxis wveTis sakuTari 

hidromeqanikuri rxevebis modelirebis cnobili analizuri meTodi da SemoTavazebulia sicarielis 

mqone wertilovani afeTqebis aris sferuli modeli. naSromis siaxles warmoadgens eileris radialuri 

gantolebis sruli amonaxsnis gamoyeneba. klasikuri sqemis, romelSic gamoiyeneboda mxolod 

Sinagani amonaxsni, aseTi modifikacia maTematikurad sakmaod koreqtulia, radganac gulisxmobs 

seismuri keris rxevis virtualobas. amrigad, moculobiTi seismuri talRebis sixSireTa diskretuli 

speqtris saSualebiT, SesaZlebeli xdeba sicarielis mqone sferuli sxeuliT aproqsimirebuli wertilovani 

afeTqebis (susti miwisZvris)  parametrebis gansazRvra. aseTi maxasiaTeblebia: seismuri keris 

(plastikurobis zona) radiusi da wrfivi drekadobis aris radiusi. amis Semdeg SesaZlebelia wertilovani 

afeTqebis an susti miwisZvris seismuri da sruli energiis sididis sakmaod martivad Sefaseba.  
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 Решается обратная  задача, цель которой заключается в моделировании дискретного 

спектра частот объемных сейсмических волн, генерированных искуственным точечным 

взрывом или слабым естественным  землетрясением (M ).    Предлогается сферическая  

модель полой  области точечного взрыва и используется известный аналитический метод для 

моделирования собственных гидромеханических колебаний жидкой капли. Новшеством, 

примененным в  работе, является  использование полного решения радиального уравнения 

Эйлера. Такая модиффикация классической схемы, в которой применялось лишь внутренее 

решение,  является математически достаточно корректной, т.к. подразумевает виртуальность 

упругих колебаний сейсмического очага. В результате,  при помощи  дискретного спектра 

частот объемных сейсмических волн, можно  определить линейные параметры области 

точечного взрыва (слабого землетрясения), аппроксимируемой полым телом сферической 

формы.  Такими линейными характеристиками являются радиус сейсмического очага (зона 

пластичности) и радиус зоны линейной упругости. После этого  можно достаточно просто 

оценить сейсмическую и полную энергию точечного взрыва  либо  слабого землетрясения.  

    
 


